
JOURNAL OF COMPUTATIONAL PHYSICS 103, 370-381 (1992) 

A Computational Study of the Discretization Error in the 
Solution of the Spencer-Lewis Equation by Doubling 

Applied to the Upwind Finite- Difference Approximation 

P. NELSON 

Department of Computer Science, Texas A & M University, College Station, Texas 77843-3112 

D. L. SETH* 

Ames Laboratory, Iowa State University, Ames, Iowa 50011 

AND 

A. K. RAY 

Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 

Received February 6, 1991; revised December 13, 1991 

A detailed and systematic study of the nature of the discretization 
error associated with the upwind finite-difference method is presented. 
A basic model problem has been identified and based upon the results 
for this problem, a basic hypothesis regarding the accuracy of the com- 
putational solution of the Spencer-Lewis equation is formulated. The 
basic hypothesis is then tested under various systematic single com- 
plexifications of the basic model problem. The results of these tests 
provide the framework of the refined hypothesis presented in the 
concluding comments. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

The Spencer-Lewis equation of electron transport, or 
other equations for charged-particle transport that involve 
the continuous slowing-down operator, recently have been 
solved by several workers by means of either the upwind 
finite-difference method [ 1,2] or the counterpart difference 
equations generated from the multigroup formalism [3-61. 
The two approaches lead to equations having identical 
forms. The differences lie in the definitions of the coefficients 
(e.g., point cross sections as opposed to group-averaged 
cross sections, respectively) and in the interpretations of the 
dependent variable (i.e., point angular fluxes versus group- 
summed angular fluxes). Hoffman et al. [3] give an 
excellent detailed discussion of these two approaches and 

* Present address: Department of Mathematics, Morehead State 
University, Morehead, Kentucky 40351. 

their similarities and differences. The primary reason for the 
popularity of these approaches is that they lead to equations 
with coefficients having the same sign properties (i.e., 
positive “effective cross sections” in the terminology of 
Filippone [7]) that appear in neutron (or gamma-ray) 
transport and that are often considered essential to some of 
the more widely used solution techniques for the latter type 
of transport problems. Thus, once the decision has been 
made to employ this type of energy difference, the subse- 
quent stages of the solution can be effected by means of any 
of the vast array of relatively sophisticated methods and 
associated codes that have been developed for neutral 
particle transport. 

As noted above, these types of energy approximations, 
with their associated first-order truncation error, have been 
widely used for practical applications. A theoretical study of 
the corresponding error in the solution, which is to say the 
discretization error, has been presented [S]. Morel [9] has 
presented some computational results bearing on the nature 
of the discretization error. The purpose of this work is to 
present additional such computational results that are 
intended to comprise a detailed and systematic study of the 
nature of the discretization error that is associated with the 
upwind finite-difference method. 

The ultimate aim of any such study of the discretization 
error should be, of course, to develop an understanding of 
how reasonably to select an energy mesh (or group struc- 
ture) for a particular problem. This understanding should 
include some indication of how the appropriate energy 
mesh varies with various characteristics of the problem at 
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hand; such characteristics might include, for example, the 
spread of electron energies in the distribution function, the 
degree of smoothness of the solution, the energy range (i.e., 
the value of the energy of a “nominal” electron), and the 
desired accuracy of the approximation. 

After formulating notations and disposing of other 
preliminary matters in Section 2, we present in Section 3 the 
computational results for what we will term the basic model 
problem (BMP). The BMP is simply the upwind energy- 
differenced Spencer-Lewis equation with a perfectly smooth 
(i.e., infinitely differentiable in energy) solution, no elastic 
scattering, a hypothetical constant (i.e., energy inde- 
pendent) stopping power, and with the angular dependence 
further approximated by the S, discrete-ordinates method. 
Based upon the results for the BMP, we formulate a basic 
hypothesis (BH) regarding the dependence of accuracy for 
the angular flux upon the energy mesh and the charac- 
teristics of the problem at hand. 

them have the unconditional positivity of the latter. The 
SMART cross section of Filippone does have this property, 
but at this writing little quantitative information regarding 
the variation of the associated discretization error with 
energy mesh seems available. Finally, we note that Seth 
[13] has established a stability theorem for the diamond- 
difference approximation to the Spencer-Lewis equation, 
thereby rigorously establishing that the discretization error 
has the same second-order behavior as does the truncation 
error. 

2. PRELIMINARIES 

The remainder of the note essentially consists of tests of 
the basic hypothesis under various systematic single com- 
plexilications of the BMP. Specifically, Sections 4 and 5 deal 
respectively with the effects of nonsmooth solution and of 
nonzero elastic scattering, while Section 6 is concerned with 
the accuracy of (energy-) integral quantities. All of these 
tests tend to confirm the validity of BH, with the expected 
provision that the requirements for given accuracy of an 
integral quantity are somewhat less stringent than for the 
corresponding accuracy for the angular flux. 

Throughout this paper we consider the source-free 
Spencer-Lewis equation in one-dimensional azimuthally 
symmetric plane-parallel geometry, subject further to the S, 
approximation with quadrature points p = + l/$ and unit 
weights. The corresponding system of equations is 

(l/~)(~)-,(~)+bu=cv+du (la) 

-(l;Js,(~)-,(~)..,=,+,a. (lb) 

In Section 7 we consider the effect of realistic stopping 
powers; again the validity of BH is verified, but now it 
is found that, for most problems, BH will require an 
unrealistically fine energy mesh, if a uniform mesh is 
required. The results of all of these tests are summarized in 
our concluding Section 8 as a refinement of BH. Given the 
simplified form of the various test problems considered in 
this paper and the necessarily somewhat limited number of 
combinations of various factors that are considered, it is not 
expected that these refined recommendations can be used 
totally to avoid computational trial-and-error in selecting 
the energy mesh appropriate to a particular problem. 
However, it is hoped that they can provide a reasonable 
starting point that will serve materially to reduce the 
amount of required computational experimentation. 

We conclude this introductory section with a brief sum- 
mary of recent work that is directed toward approximation 
of the continuous slowing-down operator, although not 
with the particular method of concern here and not 
necessarily with any specific focus upon discretization error 
per se. Alternate such approximations have been discussed 
by Morel [9] (the diamond-difference approximation), by 
Lazo and Morel [ 111 (a linear discontinuous approxima- 
tion), and by Filippone et al. [12] (the streaming-ray 
method); the first two of these are known to have higher- 
order truncation error than the upwind method, but none of 

Here u(z, E), (u(z, E)) is the angular flux (electrons/s/cm2) 
of right-moving (resp., left-moving) electrons, where “right” 
and “left” refer respectively to the z-direction cosines 
p = I/,/? and p = - l/d. Further, z denotes distance 
(g/cm’) from the left face of the underlying slab, /?(z, E) is 
the stopping power (MeV-cm2/g), E is the electron energy 
(MeV) which ranges over 0 < E, < E < E, < cc for suitable 
minimum and maximum energies E, and E,,,, CJ(Z, E) is the 
cross section (cm’/g) for elastic scattering, and c(z, E), 
d(z, E) are the position and energy dependent azimuthally 
integrated differential cross sections (cm’/g) for elastic scat- 
tering. The units indicated result from dividing the standard 
transport equation by the density of the underlying medium 
and then absorbing the density into respectively distance, 
stopping power, total elastic cross section, and differential 
elastic cross section in the four terms of ( 1 ), as read from left 
to right. (This procedure is the defucto standard in the field 
of electron transport.) 

The upwind finite-difference approximation [ 1,2] to (1) 
is defined as follows: Let an energy mesh be defined by 
E, = E, > E, > . . > E, = E,. The energy derivative on 
the left-hand side of (la) is then replaced by 

g(z,Ei)= 
ui- ltz) - ui(z) 

E-- -E- 3 i=l z, 7 . . . . (2) 
rl I 

and similarly in (lb). Here u;(z) and vi(z) are respectively 
the approximations to u(z, Ei) and u(z, Ei), and further E,, 
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uO, and v0 must be selected. Reasonable choices for the latter 
are E,=2E,-E,, u,=o,=O. 

The system of differential-difference equations resulting 
from applying the upwind differencing scheme to (1) at each 
energy mesh point is 

and 

= c(z, Ei) u, + d(z, Ei) u,, i = 1, . . . . I, (3a) 

B(Z, Ei)(Uj- I - vi) + c(z E,) u 
(Eipl-E,) ’ ’ ’ 

= d(z, Ei) u; + c(z, EJ ui, i=l I. 3 ..., (3b) 

In the present work this system of equations is always 
solved subject to boundary conditions consisting of a 
specified incident distribution of electrons on the left face of 
the underlying slab, 

U,(O) =f(Ei), i = 1, . . . . Z, (da) 

and zero incident distribution at the right face (z = a), 

u,(a) = 0, i = 1, . . . . I. (4b) 

Furthermore, all of our comparisons of accuracy will be 
based upon either the exit angular fluxes at the right face, 
U, (a) for i = 1, . . . . Z, or upon some integral function of these 
exit fluxes. Throughout this paper the exit fluxes were com- 
puted by the technique of doubling [ 141, which perhaps is 
best viewed as a version of the well-known (e.g., [15]) 
method of invariant embedding. This technique does not 
seem to have had wide usage in particle transport, but see 
[ 16, 171. It has been extensively applied in radiative 
transfer calculations, cf., e.g., [lS, 193, and other works 
cited in these references; Plass et al. [ 191 especially give an 
excellent historical discussion, with numerous references. 
Doubling, and more generally invariant embedding, have 
traditionally been viewed as essentially one-dimensional 
methods, but there has been recent work [20,21] related to 
multidimensional extensions. 

The truncation error of (3) considered as an approxima- 
tion to (1 ), which is to say the amount by which a solution 
of (1) fails to satisfy (3), is 

for the ith equation of (3a), with a similar expression for the 
ith equation of (3b). If u is twice continuously differentiable 

in E and has piecewise continuous third derivative in E, 
with each jump discontinuity of this third derivative coin- 
ciding with a point of the energy mesh (i.e., an Ei), then it 
follows from Taylor’s theorem with differential remainder 
that (5) is equal to 

for EicE=cE,_,. (6) 

As (6) is first order in the cell width, the upwind linite- 
difference method often is described as first order. 

For purposes of the error study presented here, it is 
important to note the precise conditions under which (6) 
holds. Because (1) is a first-order system of partial differen- 
tial equations, any discontinuity of the incident flux or any 
of its derivatives propagates along its characteristics, which 
is to say along the particle trajectories in (z, E)-space. 
Therefore, the requirement that the discontinuities in the 
third (energy-)derivative of u coincide with mesh points 
essentially requires that the function f specifying the 
incident flux according to 

40, E) = f(E), E,dEdE, (7) 

be thrice continuously differentiable. Furthermore, as our 
specification of E, as the maximum energy of interest 
essentially means that the incident flux is specified to be 
identically zero for E > E,, validity of (6) also apparently 
requires that f and its first and second derivatives have 
value zero at E, [9]. (The situation at the “corner” 
(z, E) = (0, E,) is closely analogous to that for neutron 
transport in (x, y)-geometry, where it was apparently first 
observed by Arkuszewski et al. [22] that the first derivative 
of the angular flux usually is discontinuous along a particle 
trajectory incident at a corner.) In the present work we 
usually arrange this by requiring thatfhave the form 

f(E) = FCE; E,, 6) 

=expCl - l/(1 - C(E- Eo)l~12)1, 

IE-E,I <b, 
= 0. otherwise, (8) 

for appropriately selected nominal energy E, and half-width 
b. As the resulting incident angular flux has continuous 
derivatives of all orders (for all real E), it clearly follows that 
estimates of the form (6) are valid for the truncation error 
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for such problems. However, in Section 4 we shall 
investigate the effect of relaxing these stringent smoothness 
requirements on the incident flux. 

3. THE BASIC MODEL PROBLEM 

The basic model problem (BMP) consists of the 
Spencer-Lewis equation approximated as described in the 
preceding section, with no elastic scattering ((T = c = d = 0), 
constant stopping power fl= 5, E, = 1, EM = 129, and 
incident flux at the left face given by (4a) and (8), with 
E, = 65, and various values of b satisfying 0 < b < 64, all in 
appropriate units. The corresponding exact value of u is 

u(z, E) = F(E + 5 $ z; E,, b). (9) 

Any computational implementation of the upwind tinite- 
difference scheme, or of the corresponding multigroup 
approximation, will produce answers contaminated with 
errors stemming from the following three sources: 

1. Discretization error associated with the energy 
differencing, as discussed in detail in the preceding section. 

2. Discretization error associated with the particular 
spatial approximation that is used to solve the differential- 
difference equations (e.g., (3)) arising from the energy 
approximation. 

3. Round-off error arising from the finite precision of 
the computer being used. 

Because our primary interest is in the first of these sources 
of error, it is desirable to produce approximate solutions (of 
the original continuous-energy continuous-space problem) 
that contain minimal contamination from the two latter 
sources of error. The manner in which this is accomplished 
in the present study will now be discussed. The discussion of 
the second and third sources of error, inherently involve the 
method of doubling [14,20] which, as indicated in the 
preceding section, is the spatial approximation that was 
used in the present work. 

Let h be the width of the initial layer that is to be used for 
application of the method of doubling. Then the associated 
spatial discretization error is expected to be proportional to 
h, at least asymptotically as h -+ 0. Thus the method of 
doubling is first order in the underlying discretization error, 
but this does not carry the same implication of inefficiency 
that is usually associated with first-order finite-difference 
schemes. (See Hughes et al. [23]; see also Wiscombe [24], 
and references cited therein, for a study of various initiali- 
zation techniques.) Therefore, it should be possible to 
eliminate nearly the effect of spatial discretization error by 
linearly extrapolating to h = 0 the computational result 
produced from two different sufficiently small values of h. 

Additionally, contamination from roundoff error should 
not be significant provided that 

hWEJ;l&,h (10) 

where AE = E, _ 1 - Ei has been assumed to be independent 
of i and r is the unit of roundoff for the particular computer 
being used. (The basis of (10) is the requirement that one be 
able to add quantities of order (h/AE)’ to quantities of order 
unity with reasonable accuracy.) Thus the effect of roundoff 
error should be minimized if the values of h used to 
extrapolate to h = 0 satisfy (10). 

The results shown in Table I illustrate the concepts and 
procedures described in the preceding paragraph. Here the 
notation u,(z, E; AE) indicates the approximation to 
u(z, E) that results from the upwind energy difference 
scheme with AE = Eip, - E, and initial-layer width h for the 
method of doubling. The third column (headed uZh - uh) 
displays a nearly linear dependence upon h within the 
range 2 -* > h > 2 -‘. The values extrapolated to h = 0 (as 
2u, - uZh) agree very closely (within + 0.00005 of 0.84380) 
for 2 e-5 > h > 2 - “. The departure from linear dependence 
upon h in the third column, which becomes noticeable at 
h = 2 ~ lo and thereafter rapidly more obvious with 

TABLE I 

Results at (z, E) = (2, 65) for the BMP, with b = 64, AE = 16, and 
Various Values of the Width (h) of the Initial Layer Used for 

Doubling 

h 
u/,(z = 2, E = 65; 
AE= 16) 

u2,,(z = 2, E = 65; 
AE=16)-u,,(z=2, 
E=65;AE=16) 

0.930184 
0.884926 
0.859436 
0.850598 
0.846974 
0.845332 
0.844553 
0.844170 
0.843980 
0.843816 
0.843860 
0.843854 
0.843827 
0.843761 
0.843312 
0.844126 
0.844118 
0.840809 
0.847413 
0.834246 
0.860763 
0.992630 

0.045258 0.839668 
0.025490 0.833946 
0.008838 0.841760 
0.003624 0.843350 
0.001642 0.843690 
0.000779 0.843774 
0.000383 0.843787 
0.000190 0.843790 
0.000084 0.843812 
0.000036 0.843824 
0000006 0.843848 
0.000027 0.843800 
0.000066 0.843695 
0.000449 0.842863 

- 0.000806 0.844932 
O.OOOOO8 0.844110 
0.003309 0.837500 

-0.006604 0.854017 
0.013167 0.821079 

-0.026517 0.887280 
-0.131867 1.124497 

Extrapolated 
toh=O 
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decreasing h, is associated with roundoff error. This agrees 
with the approximate value of 22’“.6 for the right-hand 
side of (10) that corresponds to single precision on the 
VAX-11/780 computer (Y = 2-23) that was used for the 
calculations shown in Table I. Based upon the results shown 
in Table I, values of h corresponding to h/AE = 2-l’ and 
2212 were used to provide the data for extrapolation to 
h = 0 for the various values of AE appearing in all calcula- 
tions described subsequently in this article, performed on a 
CRAY. 

Some results for the BMP, with various values of AE and 
specific values of b, z, AE selected to give a clear display of 
asymptotic linear error reduction, are shown in Table II. 
Here u(z, E; AE) denotes the computational result obtained 
by extrapolating to h = 0 (from the data corresponding to 
h =2-” AE, 2-l* AE). The symbol “N” denotes the 
number of (energy-) mesh points and n2, n3 are estimates 
of the order of convergence. The latter are obtained by 
assuming the u(z, E; AE) satisfy an equation of the form 

u(z, E; AE) = u(z, E) + c(z, E) AE” + O(AE”), (11) 

and, further, that AE is sufficiently small so that the 
higher-order term is negligible. On this basis, the order of 
convergence (i.e., the exponent in (11)) is given by either 

or 

n, = ln[(u(z, E, 2AE) - u(z, E))/ 

(u(z, E; AE) - U(Z, E))]/ln 2 

n3 = ln[(u(z, E; 4AE) - u(z, E; 2AE))/ 

(u(z, E; 2AE) - u(z, E; AE))]/ln 2. 

TABLE II 

(12) 

(13) 

Results at (z, E) = (2, 65), Extrapolated to h = 0 for the BMP, with 
b = 64 and Various Values of AE 

u(z=2, E=65; u(z=2,E=65; 
u(z= 2, AE)-u(z= 2, 2AE)- u(z = 2, 

AE(N) E=65;AE) E=65) n2 E=65;AE) n3 

640) 0.76290 
335) 0.80773 
16(9) 0.84380 
8(17) 0.87959 
4(33) 0.90203 
2(65) 0.91329 
l(129) 0.91872 

0” 0.92429 
Exact 0.92401 

-0.16111 
-0.11628 0.47 -0.04484 - 
- 0.08022 0.54 -0.03606 0.31 
- 0.04442 0.85 -0.03579 0.01 
-0.02198 1.02 - 0.02244 0.67 
-0.01072 1.04 -0.01126 1.00 
-0.00529 1.02 - 0.00544 1.05 

0.00028 -0.00556 - 

y Extrapolated to AE=O as 4u(z=2, E=65; AE= 1)/3 -u(z=2, 
E=65;AE=4)/3. 

The computed orders of convergence shown in Table II 
clearly display linear convergence, especially for AE < -8. 
Furthermore, the approximation obtained by (linear) extra- 
polation to AE = 0 has approximately one digit more of 
accuracy (relative to the exact solution) than does the value 
obtained using the smallest AE. Both of these observations 
support the hypothesized linear behavior of the discretiza- 
tion error. On the other hand, the corresponding results in 
Table III, again for the BMP, but now with b = 4, show 
considerable scatter in the order of convergence, with no 
really discernable trend toward n = 1. Furthermore, the 
value obtained by linear extrapolation to AE = 0 is accurate 
only to one digit, as contrasted to the (nearly) three digits 
of accuracy in the previous problem. 

In order to understand the reason for the divergent 
behavior in the two problems, note that the expression (6) 
for the truncation error suggests the “constant” c in (11) is 
equal to one-half times a typical value of the second 
(energy-) derivative of the solution and, further, that the 
higher-order term is equal to the product of one-sixth AE2 
and a typical value of the third (energy-) derivative. Now if 
M is the maximum value of an electron distribution func- 
tion and b is a half-width in energy, then the mean-value 
theorem suggests that typical values for the second and 
third derivatives are 2M/b2 and 8M/b3, respectively. Thus 
the criterion that the higher-order term in (11) actually be 
negligible compared to the lowest-order term is 

AE 4 3b/4. (14) 

For. b = 64, the criterion (14) is AE < 48, which 
presumably is adequately satisfied for the last few values of 
AE shown in Table II. On the other hand, for b = 4 the 
criterion (14) becomes AE 4 3, which obviously does not 
hold for AE = 1. If (14) is indeed a valid criterion for an 

TABLE III 

Results at (z, E) = (i, 65), Extrapolated to h = 0, for the BMP, 
with b = 4 and Various Values of AE 

u(z=&E=65; u(z=Q,E=65; 
u(z = $, AE)-u(z= $, 2AE)-u(z=$, 

AE(N) E=65;AE) E=65) n2 E=65;AE) n3 

‘NJ 0.98323 0.05921 

32(5) 0.96674 0.04273 0.47 0.01649 

16(9) 0.93458 0.01057 2.02 0.03216 -0.96 

8(17) 0.87344 - 0.05057 - 2.26 0.06114 -0.93 

4(33) 0.76290 -0.16111 - 1.67 0.11054 -0.85 

2(65) 0.80773 -0.11628 0.47 -0.04484 1.30 
l(129) 0.84380 -0.08022 0.54 -0.03606 0.31 

0” 0.87076 -0.05325 -0.02697 
Exact 0.92401 - 

a Extrapolated to AE=O as 4u(z= $, E=65; AE= 1)/3 -u(z= i. 
E=65;AE=4)/3. 
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asymptotic linear error reduction in (energy-) discretization 
error to hold, then we would expect this linearity to become 
(just) discernable for b = 16 at AE z 1, 2, but not for much 
larger values of AE. This expectation indeed is borne out by 
the results shown in Table IV. The greater adherence to 
linearity in Table IV (compared to Table III) most clearly 
shows in the last few values of n2, and also in the fact 
that extrapolation to E = 0 yields an order of magnitude 
improvement in accuracy. The latter is comparable to the 
improvement seen in Table II and contrasts to that of less 
than a factor of two seen in Table III. 

In Table II (b = 64) we begin to see error reduction that 
is closely linear at N = 17 (or 16 energy cells). The corre- 
sponding point in Table IV (b = 16) occurs at 64 energy 
cells. Based upon these observations and similar ones 
at other values of (z, E) for the BMP, we formulate the 
following: 

BASIC HYPOTHESIS (BH). In order to attain the theoreti- 
cal asymptotic linear error reduction for the upwind finite- 
difference method with a uniform energy mesh, it is necessary 
to have at least 10 to 20 energy cells over the effective spread 
of the electron distribution function and over the entire energy 
range and spatial domain of interest. 

The next several sections effectively comprise a test of this 
hypothesis under various modifications of the BMP toward 
greater contact with reality. We conclude the present section 
with discussions of two important points. 

First, note that although a relative fine energy mesh (as 
described in BH) seems necessary to attain the asymptotic 
linear error reduction, essentially all of the results shown in 
Tables II-IV are accurate to within 20 %. Thus, taken alone 
these results would suggest that a quite coarse energy mesh 
would give adequate accuracy for many purposes and that 
a mesh as fine as that described in BH will give far more 

TABLE IV 

Results at (z, E) = (i, 65), Extrapolated to h = 0, for the BMP, 
with b = 16 and Various Values of dE 

u(z=;,E=65; 
u(z = f, AE) - u(z = 4, 

AE(N) E=65;AE) E=65) 

64(3) 0.93458 0.01057 
32(s) 0.87344 -0.05057 
16(g) 0.76290 -0.16111 
8(17) 0.80773 -0.11628 
4(33) 0.84380 - 0.08022 
365) 0.87959 - 0.04442 
l(129) 0.90203 -0.02198 

0” 0.92144 -0.00257 
Exact 0.92401 

u(z=f,E=65; 
2AE) - u(z = f, 

n2 E= 65; AE) n3 

- - 

0.06114 - 
-1.67 0.11054 -0.85 

0.47 -0.04484 - 
0.54 -0.03606 0.31 
0.85 -0.03579 0.01 
1.02 -0.02244 0.68 

- 

“Extrapolated to AE=O as 4u(z=8, E=65; AE= 1)/3Lu(z=8, 
E=65;AE=4)/3. 

TABLE V 

Results at (z, E) = (l.l), Extrapolated to h = 0 for the BMP, with 
b = 64 and Various Values of AE 

u(z= 1, E= 1; u(z= 1, E= 1; 
u(z = 1, AE) - u(z = 1, 2AE) - u(z = 1, 

AE(N) E=l;AE) E=l) n2 E=l,AE) “3 

W) 0.11819 0.06654 
Q(5) 0.17768 0.12603 -0.92 -0.05949 
16(g) 0.16488 0.11322 0.16 0.01279 
8(17) 0.12488 0.07322 0.63 0.04001 - 1.65 
4(33) 0.09902 0.04736 0.63 0.02586 0.63 
2(65) 0.07998 0.02832 0.74 0.01904 0.44 
l(129) 0.06757 0.01591 0.83 0.01241 0.62 

0” 0.05709 0.00543 
Exact 0.05165 

“Extrapolated toAE=Oas4u(z=l, E=l;AE=1)/3-u(z=l,E=l; 
AE=4)/3. 

accuracy than normally required. The results shown in 
Table V (which were taken from the same computations 
used to produce Table II) show that this decidedly is not 
true. Here all calculated approximations to u( 1, 1) differ 
from the exact value by more than 40 %, and even the value 
obtained by extrapolation to E = 0 is in error by more than 
10%. Table V shows that the condition described in BH 
cannot be sufficient to attain the asymptotic linear error 
reduction. The point is that attaining such error reduction 
depends (crucially) upon the quantity being approximated, 
as well as on the energy mesh. Note that the quantity 
highlighted in Table V, namely the flux at the lowest point 
in the energy mesh, is vital to calculation of charge deposi- 
tion, which is a quantity that often is of interest in situations 
motivating electron transport calculations. 

Our second point of discussion has to do with the 

TABLE VI 

Results at (z, E) = (8,65), Extrapolated to h = 0 for the BMP, with 
b = 16 and Various Values of AE 

u(z = 8, E = 65; u(z=8, E=65; 
u(z = 8, AE) - u(z = 8, 2AE) - u(z = 8, 

AE(N) E = 65; AE) E=65) n2 E=65;AE) n3 

6‘W) 0.33874 0.33874 - 
32(5) 0.11474 0.11475 1.56 0.22399 
16(g) 0.01317 0.01317 3.12 0.10158 1.14 
8(17) 0.00125 0.00125 3.40 0.01192 3.09 
4(33) 0.00001 0.00001 6.83 0.00124 3.27 
2(65) 0.12496( -8) 0.12496(-8) 13.1 0.00001 6.82 
l(129) 0.46108( - 16) 0.46108( - 16) 24.7 0.12495( -8) 13.10 

0” -0.36462( - 5) -0.36462( - 5) - 0.36462(-5) - 
Exact 0 

“Extrapolated toAE=Oas4u(z=l,E=l;AE=1)/3-u(z=l, E=l, 
AE=4)/3. 
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phenomenon of “false energy straggling.” This term is used 
to indicate the phenomenon that the upwind linite- 
difference approximation (or the analogous multigroup 
method) will predict nonzero electron fluxes at energies 
such that all electrons will in fact-at least according to the 
Spencer-Lewis equation-have slowed down past that 
energy. We present results that show this phenomenon is 
indeed a form of discretization error and therefore will tend 
rapidly to disappear with an increasingly line energy mesh, 
once the mesh becomes “sufficiently line.” Nevertheless, 
we also present results that show this phenomenon is 
remarkably persistent, in that there exist points, particularly 
near regions of relatively rapid energy variation of the elec- 
tron distribution, such that “sufficiently fine” is impractical 
to attain and false energy straggling will be significant even 
for very line energy meshes. Both of these observations are 
in agreement with the results noted by Morel [S]. 

The rapid disappearance of false energy straggling with 
increasing fineness of the energy mesh is illustrated in 
Table VI. Because the exact flux and all of its energy 
derivatives vanish in some neighborhood of (z, E) = (8, 65), 
one would expect that the numerical solution at this point 
would eventually converge to zero faster than any fixed 
power of AE. Indeed this expectation seems to be supported 
by the computed orders of convergence (n2 and n3) in 
Table VI. Furthermore, at least for AE < 4, the actual com- 
puted values of the transmitted flux are sufficiently small 
so as to be zero for virtually any conceivable purpose. 
However, the latter is a consequence of the fact that the 
higher-energy edge of the incident pulse of electrons has 
decayed to well below 65 MeV at 8 g/cm2. (In fact, for the 
present model the incident pulse has been entirely absorbed 
at z = 8). The results displayed in Table VII comprise a 
more severe test; here the higher-energy edge of the incident 

TABLE VII 

Results at (z, E) = (2, 65), Extrapolated to h = 0 for the BMP, with 
b = 16 and Various Values of AE 

u(z=2,E=65; 
u(z=2, AE)- u(z = 2, u(z=2,E=65; 

BE(N) E=65;AE) E=65) n2 2AE) n3 

64(3) 0.76290 0.76290 
32(5) 0.58201 0.58202 0.39 0.18089 

16(9) 0.33874 0.33874 0.78 0.24327 -0.43 
8(17) 0.29275 0.29276 0.21 0.04599 2.40 
4(33) 0.20419 0.20421 0.52 0.08855 -0.95 
2(65) 0.12271 0.12273 0.73 0.08 148 0.12 
l(129) 0.06312 0.063 14 0.96 0.05959 0.45 

0" 0.01609 0.01609 0.04702 
Exact 0 

“Extrapolated to AE=O as 4u(z=2, E=65; AE=1)/3-u(z=2, 
E=65; AE=4)/3. 

pulse has decayed to 63.7 MeV, which is only slightly below 
the 65 MeV at which the approximations are tabulated. 
Now the computed orders of convergence are just beginning 
to approach linearity, even for the case of 129 mesh points. 
Furthermore, even for this finest energy mesh with AE = 1, 
the computed value is a very poor approximation (for most 
purpose) to the true value of zero. 

4. NONSMOOTH SOLUTION 

In this section we consider the effect of nonsmooth solu- 
tions upon the rate of convergence, as AE + 0, of the 
upwind finite-difference method. The lack of smoothness 
is achieved by considering the incident angular flux 
f( E, E, ; b) at z = 0 as the sum of a linear “tent” function and 
a paraboloid, 

i 

1 - E1 ]szl/6 - E2(Q)2/62, 

f(E; Eo, b) = OdlQlGb, (15) 

0, (QI > b. 

Here 52 = E - E,. The subsequent solution of the BMP is 

u(z, E; E,, b) = 

1 

1 - ~1 IQ; l/b - 4Q,Y/b2, 
OdIQ;l<b, (16) 

0, IQzl >b, 

whereQ,=E+5$z-E,. 
The values s1 = s2 = 0.5 were used for most of the com- 

putations. The incident distribution and the subsequent 
solution have discontinuous first derivatives when 5 4 z = 

TABLE VIII 

Results at (z, E)= (4, 33), Extrapolated to h=O for the BMP 
except with the Incident Flux Given by (15) for b=64, E,= 6.5, 

and E, = .Q = 0.5, for Various Values of AE 

u(z=4,E=33; u(z=4,E=33; 
u(z=4, AE)- u(z = 4, 2AE)- u(z = 4, 

AE(N) E=33;AE) E=33) n E=33;AE) n3 

32(5) 0.70245 -0.27606 
16(9) 0.79530 -0.18322 0.59 -0.09285 - 
8(17) 0.86376 -0.11476 0.68 -0.06846 0.44 
4(33) 0.90866 - 0.06986 0.72 - 0.04490 0.61 

2(65) 0.93710 -0.04141 0.75 - 0.02844 0.66 
l(129) 0.95511 - 0.02340 0.82 -0.01801 0.66 

0.5(257) 0.96634 -0.01218 0.94 -0.01123 0.68 
0.25(513) 0.97298 -0.00553 1.14 -0.00665 0.76 

0” 0.97894 - 0.00043 
Exact 0.97852 

“Extrapolated to AE=O as 4u(z=4, E= 33; AE=25)/3 -u(z=4, 
E=33;AE=0.25)/3. 
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FIG. 1. Plot of n, vs. dE for the case in Table VII. 

E,-Eand5$z=E,-Efb.Thusweexpectthatina 
neighborhood of the discontinuity, a fine energy mesh will 
be required to observe the predicted first-order convergence 
rate. Table VIII verifies this expectation (cf. also Fig. 1). At 
z = 4 with E, = 65, b = 64 the solution has a discontinuous 
first derivative near E = 33. (The values of ~(4, 33, AE) were 
again obtained using the values of h so that h/AE=2-“, 
2 ~ ‘*.) We required 256 energy groups to see the anticipated 
first-order error reduction, with somewhat slower conver- 
gence observed for coarser energy meshes. Thus, near 
discontinuities of the first derivative of the solution that are 
propagated from the discontinuities of the first derivative of 
the incident flux, one may well require a liner energy grid 
than that recommended by BH in order to see the first-order 
error reduction. 

Results of the type shown in Table VIII actually are a 
typical over the entire range of (z, E) values considered. 
More typically, we approach first-order error reduction 
with 9 to 33 energy nodes, after which the error reduction is 
precisely first order, i.e., n3 = 1. Table IX shows an example 
of such behavior. (The variation of n2 with AE is also shown 
in Fig. 2.) This behavior again supports BH for the number 
of energy nodes required to achieve first-order error 
reduction. 

A third convergence pattern was observed for energy 
values where the solution was linear, which in the case 

TABLE IX 

Results at (z, E)= (1, 65), Extrapolated to h =0 for the BMP 
except with the Incident Flux Given by (15) for 6 = 64, E, = 65, 

and e1 = Ed = 0.5 for Various Values of AE 

u(z = 1, E = 65; 
u(z = 1, AE) - u(z = 1, 

AE(N) E=65;dE) E=65) 

f43) 0.87344 -0.04975 
335) 0.89195 -0.03125 
16(9) 0.90638 -0.1680 
8(17) 0.91473 -0.00846 
4(33) 0.91896 - 0.00423 
2(65) 0.92107 -0.00211 
l(129) 0.92213 -0.00106 

0.5(257) 0.92266 -0.00053 
0.25(513) 0.92292 - 0.00026 

0” 0.92319 0.73236( - 10) 
Exact 0.92319 

“2 

u(z= 1, E=65; 
2Ll.q - u(z = 1, 
E = 65; AE) *3 

0.67 -0.01850 
0.90 -0.01445 
1.0 -0.00835 
1.0 - 0.00423 
1.0 -0.00211 
1.0 -0.00106 
1.0 -0.00053 
1.0 - 0.00026 

0.36 
0.79 
0.98 
1.0 
1.0 
1.0 
1.0 

a Extrapolated to AE=O as 4u(z=4, E= 33; AE=25)/3 -u(z=4, 
E = 33; AE = 0.25)/3. 

of the solution (16) means values of (z, E) such that 
IE + 5 $ Z-E, I> b (where u(z, E; E,, b) = 0). For such 
(z, E) we see very rapid convergence even for the first few 
(i.e., largest) values of AE, see Table X. The obvious 
hypothesis to explain such results is that the rapid con- 
vergence (i.e., more than linear) at larger AE occurs because 
higher-order terms dominate the discretization error, 
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AE 

FIG. 2. Plot of nz vs. AE for the case in Table IX. 
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TABLE X 

Results at (z, E)= (8, 97), Extrapolated to h=O for the BMP 
except with the Incident Flux Given by (15) for b = 64, E,, = 65, 

and E, = Ed = 0.5 for Various Values of AE 

u(z=8,E=97; 
2AE)-u(z= 8, 

AE(N) u(z=8,E=97;AE) n, E=97;AE) n2 

335) 0.71714(- 1) 

16(9) 0.27826(-l) 1.37 0.43888(- 1) - 

8(17) 0.64534(-2) 2.11 0.21372( - 1) 1.04 

4(33) 0.61348(-3) 3.40 0.58399(-2) 1.87 

2(65) 0.11106(-4) 5.79 0.60237(-3) 3.28 
l(129) 0.81377(-8) 10.41 0.11098( -4) 5.76 

0.5(257) 0.10656( - 13) 19.54 0.81377( -8) 10.41 
0.25(513) 0.47319( -25) 37.71 0.10656( - 13) 19.54 

0” -0.27126( -8) 
Exact 

“Extrapolated to AE=O as 4u(z=4, E=33; AE=25)/3-u(z=4, 
E= 33; AE=0.25)/3. 

although the discretization error is the major contribution 
to the total error. That is, at these values of (z, E), the func- 
tion we are attempting to recover is linear and first-order 
methods are “exact” for polynomials of order one. 
Computations implemented for the BMP with the incident 
flux a linear “tent” function, given by (15) with s2 = 0, 
corroborate this hypothesis. Very rapid convergence was 
observed away from the discontinuities of the derivatives of 
the solution. For such (z, E) we see very rapid convergence 
for the first few (i.e., largest) values of AE, until agreement 
to within the last three or four digits of the exact answer is 
attained. At this point the rate of convergence seems to vary 
more-or-less randomly, as Table XI demonstrates. The 

TABLE XI 

Results at (z, E) = ($, 65), Extrapolated to h = 0 for the BMP 
except with the Incident Flux Given by (15) for b=64, E,=65, 

and E, = Ed = 0.5, for Various Values of AE 

u(z=$,E=65; u(z=;,E=65; 
u(z = ;, AE)-u(z= t, 2AE)-u(z= i, 

AE(N) E=65;AE) E=65) "I E=65;AE) fl2 

W3) 0.98323 0.14230( - 3) - 

3’85) 0.98309 0.31259( -5) 5.51 0.13917(-3) ~ 

16(9) 0.98309 0.26643(-S) 10.2 0.31232( -5) 5.48 
8(17) 0.98309 0.24514( - 12) 13.41 0.26641(-g) 10.2 

4(33) 0.98309 0.49383(- 12) - 1.01 0.24869( - 12) - 

2(65) 0.98309 0.98410( - 12) -1.0 0.49027(-12) -0.98 
1( 129) 0.98309 0.19647( - 11) -1.0 0.98055(- 12) - 1.0 

0” 0.98309 -0.24550(-11) - 
Exact 0.98309 

“Extrapolated to AE= 1 as 4u(z= Q, E=65; AE= 1)/3- u(z= $, 
E=65;AE=4)/3. 

“random scatter” in the rate of convergence at small values 
of AE then presumably is caused by dominance of roundoff 
error in the range. However, as with the quadratic incident 
flux, s1 = a2 = 0.5, a very line energy grid was required to see 
the anticipated first-order error reduction for values of 
(z, E) near the discontinuities of these derivatives. 

5. SCATTERING 

In this section we present results relating to the effect of 
scattering upon the rate of convergence, as AE + 0, of the 
upwind finite-difference method. The underlying problem 
is the BMP, except with CJ = c = d= 0 replaced by 
r~ = 1.0 cm2/g, c = 0.8 cm2/g, and d = 0.2 cm’/g, where c and 
dareasin(l). 

Table XII displays results analogous to those of Table IV 
for the nonscattering problem (i.e., c = d= 0). As for 
Table IV we see that the rate of convergence approaches 
linearity, but only at a relatively fine energy mesh. Results 
for a broader (b = 64) and narrower (b = 4) energy distribu- 
tion likewise are qualitatively similar to those of Tables II 
and III, respectively, in that the former achieve linear 
convergence for a bit coarser mesh than for b = 16 (i.e., the 
results of Table IV), while the order of convergence for the 
latter have not yet converged for the range of energy meshes 
shown in Table XII. These data also suggest the possibility 
that inclusion of scattering means a slightly more relined 
energy mesh (than that described in the BH) is required for 
the onset of the asymptotic linear convergence. Similarly, 
the analog of the calculations of Table VII for the present 
case shows that scattering reduces the straggling to about 
half that of Table VII for fine energy meshes and by some- 
what less than that ( = 60%) for coarser meshes. In sum- 
mary, scattering does not seem to significantly impact the 
preceding observations. 

TABLE XII 

Results at (z, E) = (a, 65) Extrapolated to h = 0, for the BMP with 
Scattering for b = 16 and E, = 65, for Various Values of AE 

u(z= 4, E=65;2E) 
AE(N) u(z= t, E=65;AE) -u(z= a, E=65;AE) "2 

W3) 0.88963 0 
335) 0.85997 0.02966 
16(9) 0.80359 0.05637 -0.93 
8(17) 0.83802 -0.03443 
4(33) 0.86677 -0.02875 0.26 
2(65) 0.88577 -0.01880 0.61 
1(129) 0.89466 -0.00909 1.05 

0" 0.90396 -0.00930 -0.03 

0 Extrapolated to AE=O as 4u(z = a. E= 65; AE= 1)/3 - u(z = i, 
E= 65; AE=4)/3. 
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6. DISCRETIZATION ERROR FOR 
INTEGRAL QUANTITIES 

There is considerable folklore to the effect that numerical 
methods for various transport problems are more accurate 
for so-called “integral quantities” than for point values of 
the angular flux. This is supported by some computational 
evidence [25] that even the order of accuracy of a method 
can be higher for integral quantities than for point values 
(and, further, that this order of accuracy can depend upon 
the precise integral quantity). (We note that a theory 
explaining some of the computational results has been given 
by Bauk and Germogenova [26].) The purpose of the work 
described in this section was to explore this matter for the 
upwind approximation that was described in Section 2. 
Toward this end we show in Table XIII typical results for 
the numerical approximation to the integral 

u(z) := lEM u(z, E) dE, 
&l 

(17) 

for the BMP of Section 3. Because the stopping power for 
this model problem is constant, this quantity is propor- 
tional to the energy deposition at the particular value of z, 
a physically important quantity in many situations. 

By way of comparison with the results for point values 
that were shown in Section 3, several matters brought out 
by Table XIII seem worthy of at least brief note. The first of 
these is that the asymptotic rate of convergence does seem 
to be linear, as was observed for the point values. However, 
perhaps the most interesting point is that on a fractional 
basis the errors in the integral quantity (17) seem to be 

TABLE XIII 

Results at z = 2, for the BMP and the Corresponding 
Approximation to (17) by Simpsons Rule over Various Energy 

Meshes 

u(z = 2; AE) u(z = 2; 2dE) 
dE(N) u(z = 2; LIE) - u(z = 2) n, - u(z = 2; LIE) n3 

64(3) 69.50510 

335) 72.30022 

16(9) 72.52981 

8(17) 73.69222 

4(33) 74.57603 

2(65) 75.06578 
l(129) 75.33028 

0” 75.58170 
Exact 75.61088 

-6.10578 - 
-3.31066 0.88 -2.79512 
-3.08107 0.11 - 2.29593 3.61 
- 1.91866 0.68 - 1.16241 -2.34 
- 1.03485 0.90 -0.88381 0.40 
-0.54510 0.93 -0.48975 0.85 
-0.28060 0.96 - 0.26450 0.89 
- 0.029 18 3.27 -0.25142 0.07 

a Extrapolated to AE = 0 as 4u(z = 2; E = 1)/3 - u(z = 2; E = 4)/3. 

about a factor of two to live smaller than for the corre- 
sponding point values discussed in Section 3. This same 
result showed up in nearly all instances for which we com- 
puted approximations to (17), so clearly it represents some 
systematic feature. The most likely explanation seemed to 
be oscillation of the pointwise error as a function of energy, 
with the consequence of a tendency toward self-cancellation 
of the effect of such errors when integral quantities are being 
approximated. The results shown in Figure 3 provide 
confirmation of this supposition. Finally, this fact also 
explains why the linear asymptotic convergence tends to 
show only for somewhat finer energy meshes for integral 
quantities than for point quantities of the type that the BH 
is based on. That is, because of the cancellation effect just 
described, round-off error will tend to be more predominant 
than discretization error for integral quantities. Further, if 
the oscillatory behaviour of the error only encompasses the 
first-order error term, as seems likely, then higher-order 
discretization error also will be relatively more important 
for integral quantities. 

In summary, the approximations to the integral quantity 
(17) via Simpson’s rule displays the linear asymptotic 
error of the corresponding point evaluations of the 
integrand, rather than the quadratic error of the quadrature 
approximation itself. There does seem to be significant error 
cancellation in forming the quadrature approximation, but 
only enough for a fractional reduction of the magnitude of 
the error, not enough to affect the order of convergence. 
The asymptotic linear convergence seems to show up 
only at somewhat finer energy grids than described in the 
BH of Section 3, presumably also because of this error 
cancellation. 
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FIG. 3. Pointwise error as a function at energy, for the BMP. 
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7. REALISTIC STOPPING POWERS 

In order to test the performance of the method for 
realistic (e.g., nonconstant) stopping powers we used the 
formula [ 271 

/I = (27rN,r~mc4/u2)(Z/A)[ln(Z/Z)2 + ln(1 + Z/2) 

+[l-(v/~)~][l+Z*/8-(2Z+l)ln2]]. (18) 

Here N, is Avogadro’s number, Y, is the classical electron 
radius, m is the electron rest mass, c is the speed of light, u 
is electron velocity, Z and A are respectively the atomic 
number and atomic weight of the target atoms, Zis the mean 
excitation energy, and Z is the kinetic energy of the electron 
in units of electron rest mass. 

Note that the results of Table XIV are for the same depth 
of penetration and energy as those shown in Table II for the 
earlier hypothetical constant stopping power; however, now 
the solution is not known analytically, so that n3 is the only 
available estimate of the order of convergence. (But the 
solution could be computed very accurately numerically, 
along the trajectory in (z, E) space corresponding to any 
incident energy, by means of standard techniques for initial- 
value problems.) In fact, the two sets of results are quite 
comparable; indeed, the only real differences are that the 
approximations for the variable stopping-power case are 
slightly more accurate (for the same energy grid) than those 
for the constant case and that the asymptotic first-order 
convergence rate is seen at slightly coarser meshes (for the 
case of variable stopping power). In summary, for the range 
of energy variation covered in our example (approximately 
1 to 100 MeV), the inclusion of variable stopping power 
does not seem to degrade either the effectiveness of the 

TABLE XIV 

Results at (z, E) = (2, 65), Extrapolated to h = 0 for the BMP with 
Stopping Power as Given by (18) and Various Values of AE, with 
2aN,r,smc2 =0.153536 MeV cm2mol-‘, Z= 13.0, A = 26.98, and 

I = 0.000166 MeV 

u(z = 2, E= 65; 2dE) 

AE(N) u(z = 2, E = 65; AE) -u(z=2,E=65;AE) n, 

64(3) -0.10154 

3245) 0.92664 - 1.02798 

16(9) 0.95384 - 0.03 190 5.01 

8(17) 0.97812 -0.01978 0.69 

4(33) 0.98752 - 0.00940 1.07 

2(65) 0.99198 - 0.00447 1.07 
l(129) 0.99416 -0.00218 1.04 

0” 0.99638 -0.00221 

a Extrapolated to AE = 0 as 4u(z = 2; E = 1)/3 - u(z = 2; E= 4)/3. 

upwind difference approximation or of its solution by 
means of the doubling method. 

We note, however, that the range of values of stopping 
powers corresponding to the energy range covered by the 
above calculations is relatively small (approximately a 
factor of 1.3). There are problems for which a much larger 
range of variation might occur. For example, if the lower 
range of electron energies of interest were 10 KeV, rather 
than one MeV, then Eq. (18) would yield a range of varia- 
tion of a factor of 8.8 in the stopping power. For such large 
variations it seems unreasonable to emply a uniform mesh 
in energy. Further, there might be interest in knowing the 
electron flux over certain very small spatial regions (e.g., if 
the energy deposition were of interest), in which case the 
doubling method probably would not provide adequate 
spatial resolution in crucial areas. However, in this case 
the addition formulas [ 14, 18, 211 conceivably could be 
employed, with little additional effort, provided the reflec- 
tion and transmission matrices generated earlier were stored 
for such usage. We hope to report elsewhere on the results 
of a study of this approach. 

8. CONCLUSIONS 

We summarize the results of the computational experi- 
ments described in Sections 47 in the form of the following 
refinement of BH of Section 3: 

In order to attain the theoretical asymptotic linear error 
reduction for the upwind finite-difference method with a 
uniform .error mesh, for a pointwise quantity in the vicinity 
of a position and energy at which the electron distribution 
function is twice continuously differentiable, it is necessary 
to have at least 10 to 20 energy cells over the effective spread 
of this funcion and over the entire energy range and spatial 
domain of interest. Near points at which the distribution 
function is not this smooth more energy cells are required to 
attain the asymptotic linear error reduction, but a higher 
rate of asymptotic error reduction is observed for linear (in 
energy) distribution functions. Somewhat greater relative 
accuracy is attained for (energy-)integral quantities for such 
energy meshes, although somewhat more relined energy 
meshes are required in order to attain the theoretical 
asymptotic linear error reduction. 
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